
Reducing Risk in Software Projects Using Behavior-Based Requirements

Jeffrey S. Davidson

Abstract

Requirements are the key to implementing the vision of a business or
client. Software project failures are a significant factor to lost capital and
operational expenses, lost time, and eventually lost opportunity and
revenue. While project failures have been well documented, less attention
is paid to the similar costs from unused and underutilized features within
software projects.

With upwards of 45% of software features never used and an additional
32% rarely used it is time to pay attention to the core needs and jettison
the wasted effort, expense, and code that is bogging down project success.

A key methodology in correcting this problem is Behavior Driven
Development (BDD). Originally developed to help developers understand
the business needs, it has grown beyond its roots and is capable of making
a significant impact on curbing excess demands, requests, and gold
plating.

Often seen as solely an Agile software development technique, this toolset
provides insight into the core functionality of a software product and can
lead to significant improvements in user experiences by removing
unnecessary functionality before it becomes embedded in modern and
future systems.

Introduction
Understanding the goals and objectives should be the first step of every project. In traditional
project delivery, the outcomes and quality of a project stems from a firm understanding of the
basics, i.e. time, scope, and cost. While each of these three may be fixed outside of the project,
the final deliverables depend on how well they are understood and implemented within the
project.

When discussing the success and failure of software projects, there are more references to the
CHAOS Report by the Standish Group than any other metric. I want you to look at the following

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 2	

table and understand software projects now, and apparently always have, do not deliver on their
initial objectives. Compared to their objectives, 63% of projects are challenged or fail! This
number would be shocking if it was a one-time event, but it’s not. It is just the latest number in a
20-year trend line.

Table 1: Standish project benchmarks over the years1

Year	 Successful	 (%)	 Challenged	 (%)	 Failed	 (%)	

1994	 16	 53	 31	
1996	 27	 22	 40	
1998	 26	 33	 40	
2000	 28	 49	 23	
2002	 34	 51	 15	
2004	 29	 53	 18	
2006	 35	 46	 19	
2009	 32	 44	 24	
2011	 37	 42	 21	

Further, Standish goes on to claim 45% of features are never used. Jim Highsmith reports2 this
number is over 50%. Half of the functionality developed in software projects is wasted.

Forrester Research Report, “Corporate Software Development Fails to Satisfy on Speed or
Quality,” (April 11, 2005) states,

Corporate development shops continue to disappoint: A fall 2004 Forrester survey of 692
technology influencers—those who hold the information technology (IT) purse strings—
indicated that nearly one-third are dissatisfied with the time it takes their development
shops to deliver custom applications, and the same proportion is disappointed by the
quality of the apps that are ultimately delivered. One-fifth of respondents are unhappy on
both counts. [Emphasis added]

The problem goes deeper though. Eveleens and Verhoef quote Standish,

“Standish defines a successful project solely by adherence to an initial forecast of cost,
time, and functionality. The latter is defined only by the amount of features and
functions, not functionality itself. Indeed, Standish discussed this in its report: ‘For

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Standish	 Group,	 CHAOS	 Reports,	 http://blog.standishgroup.com/.	 	
	
2	 Jim	 Highsmith,	 “Beyond	 Scope,	 Schedule,	 and	 Cost:	 The	 Agile	 Triangle,”	 http://jimhighsmith.com/2010/11/14/beyond-‐
scope-‐schedule-‐and-‐cost-‐the-‐agile-‐triangle/.	 	
	

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 3	

challenged projects, more than a quarter were completed with only 25 percent to 49
percent of originally specified features and functions.’”3 [Emphasis added]

Summarily, we have failed projects, we have significant portions of functionality sitting unused,
we have unhappy executives, and we have challenged projects delivering less than half the
functionality.

There are many ways to run a failed project, but only a few ways to run a successful one. Some
of the recurring and significant contributors to these problems are centered on understanding the
scope of the problem and solution, involvement of key personnel with the project team, and
defining detailed requirements of what needs to be built.

Capers Jones, the pre-eminent expert on software quality stated,

“Although clear requirements are a laudable goal, they almost never occur for nominal
10,000 function point software applications. The only projects I have observed where the
initial requirements were both clear and unchanging were for the specialized small
applications below 500 function points in size.”4

This is the crux of why I propose the standard formats for eliciting and communicating
requirements are deficient and need to be revisited. Software delivery project problems will not
cease when we have a better understanding of software requirements, but we can start making
radical improvements to the decrepit state of affairs in today’s projects.

Thinking like an investor
Chris Matts proposes there are only three reasons for developing software; making money (or
expanding the organization’s mission), saving money, or protecting money, including risk
avoidance or compliance dictated. Consequentially, every software development project is an
investment.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 J.	 Laurenz	 Eveleens,	 and	 Chris	 Verhoef,	 “The	 Rise	 and	 Fall	 of	 the	 Chaos	 Report	 Figures,”	 2010	 IEEE	 SOFTWARE,	 Jan/Feb,	
pp.	 30-‐36.	 	 	

“Standish	 defines	 a	 project	 as	 a	 success	 based	 on	 how	 well	 it	 did	 with	 respect	 to	 its	 original	 estimates	 of	 the	 amount	
of	 cost,	 time,	 and	 functionality.”	 Eveleens	 and	 Verhoef	 argue	 CHAOS	 Reports	 measure	 software	 projects	 in	 comparison	 to	
their	 initial	 estimates	 and	 other	 factors.	 As	 such,	 they	 may	 not	 be	 accurate	 due	 to	 problems	 in	 the	 initial	 estimate.	 	

This	 paper	 does	 not	 dispute	 problems	 with	 initial	 estimates,	 but	 rather	 presumes	 the	 sponsors	 of	 such	 projects	
expected	 them	 to	 deliver	 as	 promised,	 even	 if	 the	 estimates	 are	 poor.	 	

	
4	 Capers	 Jones,	 Software	 Engineering:	 State	 of	 the	 Art	 in	 2005,	 http://twin-‐spin.cs.umn.edu/sites/twin-‐
spin.cs.umn.edu/files/STATEOFART2005.pdf.	 	 	

Jones	 states	 large	 projects,	 “a	 size	 of	 10,000	 function	 points	 is	 roughly	 equal	 to	 about	 1,250,000	 statements	 in	 the	 C	
programming	 language.”	 Further	 information	 on	 estimating	 code	 based	 on	 function	 points	 may	 be	 found	 at:	
http://www.qsm.com/resources/function-‐point-‐languages-‐table.	 	

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 4	

Gene Kim and Mike Orzen “calculated the global impact of IT failure as being $3 trillion (US)
annually.”5 This includes $100 billion of waste just from S&P 500 companies and at least $250
billion in failed IT projects. Software delivery projects are failing.

A primary issue is many project failures is Project Managers, Business Analysts, and project
teams understand the list of features to be delivered, but do not understand the project’s purpose.
Many individuals are good at running calculations to determine Cost-Benefit Analysis and
Return-on-Investment. Even more teams know where to find the list of features to be built and
tested. What teams do not have a deep understanding of is why the business investment is being
made and how the organization will benefit from it. They do not shepherd the project as if their
own capital was at risk.

The truth of every software project, despite the thinking of so many of my peers, is the value of
an IT system is entirely based on the expected outputs or outcomes. Systems are not built
because they are esthetically pleasing or to meet the experiential design goals.6 Rather, IT
systems are built to make, save, and protect money.

Over the last decade a number of tools have been developed to assist development teams with
grasping how to approach problems based on this mindset. The first of which is Feature
Injection.7

There are three steps to feature injection:

1. Hunt the value – Build a model based on your desired results
2. Inject the features – Use the model to decide what features pull us toward the value
3. Spot the examples – Use stories to find variants to the happy path and have a conversation

Step 1: Hunt the value
The value of a software project needs to be boiled down to a well-understood model. Models
should be specific and targeted towards the desired business value. This value must be both
clearly defined and communicated to the entire project team. Communicating specific goals and
the delivery outcomes expected aligns the team with the organization.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5	 Michael	 Krigsman,	 “Worldwide	 cost	 of	 IT	 failure	 (revisited):	 $3	 trillion”	
http://www.zdnet.com/blog/projectfailures/worldwide-‐cost-‐of-‐it-‐failure-‐revisited-‐3-‐trillion/15424.	 	
	
6	 I	 wish	 enterprise	 systems	 were	 more	 pleasing	 to	 the	 eye	 and	 had	 better	 experiences	 for	 their	 many	 users.	 Michael	
Krigsman,	 has	 a	 good	 discussion	 about	 how	 enterprise	 software	 is	 currently	 directed	 at	 management	 over	 users	 in	
“Enterprise	 software	 under	 attack,”	 http://www.zdnet.com/blog/projectfailures/enterprise-‐software-‐under-‐
attack/14709	 resulting	 in	 poor	 user	 adoption	 and	 reduced	 benefit	 from	 those	 systems	 where	 users	 can	 make	 a	 choice.	 	 	
	
7	 Further	 information	 can	 be	 found	 at	 http://www.infoq.com/articles/feature-‐injection-‐success.	 	

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 5	

Models require only a concise statement about the output or outcome and how this will be
achieved. It does not require a significant document and can often be conveyed in a single
paragraph.

Step 2: Inject the features
It is by looking at a project through the lens of what value needs to be created we can spot the
features that must be added, or injected. This list of features should be only those items that pull
us towards the greater value. This is not the same activity as recording a list of desirable or
demanded features. Rather, this becomes a focused set of features, driving towards specific
outputs defined within the model.

Step 3: Spot the examples
Examples are the real world test of what a system needs to be responsive towards. Using the
steps above will find most paths to a positive output (value). This step is focused on both
ensuring negative paths are understood and the system can be validated as successful. Examples
become the communication tool to ensure the system is adequately built.

Of course, the unstated fourth step is to follow information smells. That is, look for gaps in
understanding, particularly around the information and data being used. This step allows you to
both confirm your models completeness and discover what may be missing. When you find
something that may be missing, whether a feature or example not adequately covered by the
existing set, repeat the above steps to fill in the hole.

Communicating through examples (Behavior-Based Requirements)
The second tool I want to introduce to you is a structured, natural language for learning, writing,
and communicating requirements. I want to re-introduce you to storytelling.

“Storytelling is among the oldest forms of communication. Storytelling is the commonality of
all human beings, in all places, in all times. ” Rives Collins, The Power of Story: Teaching
Through Storytelling 8

The oldest written story is The Epic of Gilgamesh9, from the land of Ur. It was likely written
about 2,700 BC. The actual history of storytelling is unknown. No one knows if the first stories
were told to calm an upset tribal member about a sudden storm or why catastrophe occurred on
the most recent hunt. No one can say the first time a story was told to explain someone else’s
behavior. What we can say is storytelling evolved to give meaning and purpose.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
8	 http://www.goodreads.com/quotes/33388-‐storytelling-‐is-‐among-‐the-‐oldest-‐forms-‐of-‐communication-‐storytelling-‐is	
	
9	 http://www.sparknotes.com/lit/gilgamesh/	

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 6	

Example: Storytelling
I want you to imagine being alive three millennia ago, when written language was rare. You live
in a tribe with your family and friends. There is nothing anyone in the tribe can do to surprise
you. You know everyone else too well. You have been through too much together to be very
surprised by anyone. You were born into this tribe and if you had to, you would die for this tribe.
You know and trust everyone else in the tribe. And they trust you.

Tonight your tribe is sitting around after a great hunt. You and your tribe have killed a bison and
tonight you feast. After the feast, and the children have started to settle down, you sit around the
fire. You get quiet and still, but you are excited. Expectant. Everyone knows what’s going to
happen next, the tribal elder is going to start telling a story.

We use stories to communicate. We don’t communicate in facts. The tribal elder didn’t say,
“Run. Many hills. No water. Throw. Parabolic arc. Dead. Eat now.”

No, the tribal said, “The winter was long and it has been many moons since our bellies were full.
Yesterday we learned of a great beast, great enough to feed us all. Early this morning we woke
and ran from when the sun came up until it was at it’s highest in the sky. We are so glad the
beast was moving slower than Ugg runs! We were incredibly thirsty, but knew the right shot
would bring us victory! Sam pulled back his arm and threw his best spear, the best throw of his
life. It was amazing and now we eat like the gods.”

And the reason the tribal elder tells his stories with a setting, a sequence of events, and a
conclusion, is because that is how we are wired. The human race has been telling stories around
the campfire since time we first grunted at each other. The first record of telling stories may be
the sons of Cheops entertained their father with stories, but we have been telling stories since
time immemorial because it is what works best.

As part of a team, we need to understand and acknowledge the human species is wired to
communicate using stories. To not tell stories is to deliberately hurt the chance of your
teammates, your organization, and your customers understanding. It becomes simple, telling
stories are good. Not telling stories is harmful.

The Wrong Focus
Our focus over the last twenty years has been to build correctly. Teams spend a great deal of
money and effort to obtain and master the latest tools. Yet despite significant investments,
despite significantly faster workstations, despite untold dollars spent on training, the products we
deliver are barely beyond what they were in 1994.

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 7	

Our focus on the building process is only part of the solution. The time has come to focus on
building the right product. Gojko Adzic presents the following chart in his latest book,
Specification by Example:

Specification by Example10

What I am proposing is stories are a key tool in a new focus, a focus on building the right
product.

This is especially true when we deal with large, complex subjects. Rich Hickey recently
presented “Simple Made Easy.”11 His points are especially poignant for teams striving to make a
difference with the software projects. They were:

• We can only hope to make reliable those things that we can understand
• We can only consider a few things at a time
• Intertwined things must be considered together
• Complexity undermines understanding

Building large software projects is a difficult endeavor. We needed to spend the last few decades
ensuring we have the proper tools for the job. Success requires more than just tools. Success will
come when we take the time and effort to enable greater understanding. Storytelling is the means
to achieve this goal. Using behavior-based requirements uniformly promotes this across all types
of projects. They are simply a means to capture the functionality of a system as described
through fine grained, focused bits of behavior. These small behavioral examples are told in a
story format, allowing easy access to readers of all kinds.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10	 Gojko	 Adzic,	 Specification	 by	 Example,	 http://specificationbyexample.com/.	 	
	
11	 Rich	 Hickey,	 “Simple	 Made	 Easy,”	 StrangeLoop	 2011,	 http://www.infoq.com/presentations/Simple-‐Made-‐Easy.	 	

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 8	

Structure of Stories
The structure for our behavior-based requirements is:

1. Context – You and your condition
2. Event – What action do you perform?
3. Outcome – What is the observed response?

When writing these requirements, they should be captured using the following language:

1. Given … (context)
2. When … (event)
3. Then … (outcome)

After using this technique for a couple years, I have specific recommendations for effectively
writing behavioral requirements. First, while the requirements need to be cover exact behaviors,
they should be design agnostic. It is not appropriate to include language implying either user
interfaces or system architectural decisions within the statements. This level of detail takes
practice to master as it is typically less than included within traditional requirements, i.e., “The
system shall….”

Second, the language used needs to be natural and not stilted, contrived, or technical. If you
cannot get an executive, a data entry clerk, and your grandmother to understand the same
sentence, you may not be writing clear enough. Read your statements out loud. If they sound
more like a novel than the technical instructions for programming your electronic clock, then you
are probably on the right path.

Third, the language needs to use business terms. This means the storytellers (users, executives,
and subject matter experts), the people documenting the stories, and the team developing the
stories will come to understand more about the business domain. This is a good thing and in
keeping with delivering value over a list of features.

Fourth, amplify and reinforce the stories with testable data. For developmental and validation
purposes, this proves the delivered code is correct. The story is correct. The understanding is
correct.

Power of Stories
There is an underlying presumption we have both misunderstandings and unknown unknowns
inherent in existing techniques. In seeking to both document those places and fill them with
understanding, the practitioner asks about usage scenarios. These stories are filled with behavior
and from this behavior design patterns emerge. The end result of using stories and examples
correctly is a shift towards better elicitation techniques.

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 9	

The simplicity of the grammatical structure belies the power this technique brings over the
course of a project. Converting needs and actions to words is inherently messy. Our language is
inexact and not designed to convey preciseness. Yet we need a level of precision and accuracy in
our project communication. This technique allows us understand and validate finite behaviors in
a large context.

This technique also encourages the discovery of what needs to be done to achieve project
objectives. Using the discovered requirements throughout the project allows for the
understanding project teams have been missing. No longer will one level of understanding be
locked in a document team members do not read or have access.

Conclusion
Based on the rates of software delivery project success, your projects should already have a risk
calculation around being challenged or outright failing. With a proper and universal
understanding of the scope and goals, this risk will be reduced. I propose using behavior-based
requirements as a key technique for achieving your common understanding, even it were to raise
your project cost or timeline.

This technique is not meant as a direct challenge to the traditional requirements elicitation and
documentation. Rather, this is a refinement of how requirements are drawn out and shared. This
technique reduces requirements risk in a manner existing requirement structures cannot.

Using this technique we begin to literally capture conversations. And in capturing, we are
sharing instead of merely interpreting. The need for business interpreters can be supplanted with
understanding. The roll of interpreter and gatekeeper changes to one of communicator and bridge
builder. Rather than attempting to push information uphill to a team, understanding can be shared
and pulled as it is needed. Sponsors and project teams have concrete and comprehensible proof
they are working towards the same ends.

“BDD is a second-generation, outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-automation, agile methodology.

It describes a cycle of interactions with well-defined outputs,
resulting in the delivery of working, tested software that matters.”

Dan North @ Agile Specifications, 2009

	

Reducing	 Risk	 in	 Software	 Projects	 Using	 Behavior-‐Based	 Requirements	 	
©2012	 Jeffrey	 S.	 Davidson	 10	

Licensing

This is licensed under Creative Commons Sharealike [CC BY 3.0]

• Please use it
• Please share it
• Please improve it
• As long as you credit me somewhere

Author

Jeffrey Davidson, CSPO, PMC is a Principal Consultant
with ThoughtWorks, a leading international Agile
development firm with a passion to improve how
businesses design, build and evolve software. He regularly
consults in the transportation and finance industries. He
also serves as the current President of IIBA Dallas
Chapter.

Jeffrey has had many titles and pseudo-titles, including
Director of Business Analysis & Quality Assurance for
UTI, Business Analyst for Dell Financial, Systems
Engineer for Raytheon, and Product Manager for Ebay.

Jeffrey’s multiple contact points are probably easiest to find by checking out his profile on
LinkedIn, http://www.linkedin.com/in/jeffreydavidson or his personal blog,
http://goodrequirements.com/.

My very favorite resources on this topic are available at http://goodrequirements.com/bdd/. 	

